Search This Blog

Tuesday, February 20, 2018

Biotechnology: A growing field in the developing world

Biotechnology: A growing field in the developing world


The developing world is achieving significant growth in a broad cross-section of biotechnology fields, many of them directly tied to food production, health and other dimensions of human well-being, says a new analysis commissioned by the CAS-TWAS Centre of Excellence in Biotechnolgy.
The first-of-its kind report, ‘Biotechnology in Developing Countries: Growth and Competitiveness’ was released today by the Beijing-based centre, which is organized by the Chinese Academy of Sciences (CAS), and The World Academy of Sciences (TWAS). The CAS-TWAS Centre of Excellence for Biotechnology report provides an assessment of research and patents in the field across the global South.
"This report is, to the best of my knowledge, the first extensive document summarizing the development status of a specific technology area in the developing world," writes Bai Chunli, the president of both CAS and TWAS, in the foreword. "It provides a strong, valuable assessment of biotechnology activities in developing countries, as measured in scientific publications and patents."
Traditionally, the United States has been viewed as the world leader in biotechnology innovation, with over 1,200 biotech companies employing almost 200,000 workers in fields ranging from human product development to food and agriculture services. Yet, as globalization becomes more prominent and technology spreads worldwide, other nations have come to the forefront of the biotech arena. Successful research and development in biotechnology is occurring in developing countries such as Brazil, China, Cuba, Egypt, India, Kenya, South Africa, and South Korea. Although these nations are at varying points in their respective economic development, each can be considered an “innovating developing country” in biotechnology with both public and private industry support
The biotechnology industries in the United States and Western Europe tend to focus on high-cost solutions for the kinds of chronic diseases that are predominant, namely, cardiovascular disease, diabetes, and tobacco-related conditions. Of the 1,393 new products marketed by Western biotechnology companies from 1975 to 1999, only 16 were for so-called “tropical diseases” and tuberculosis — the major public health issues in developing nations

Agricultural Biotechnology

AGRICULTURAL BIOTECHNOLOGY

1. What is Agricultural Biotechnology?
Agricultural biotechnology is a range of tools, including traditional breeding techniques, that alter living organisms, or parts of organisms, to make or modify products; improve plants or animals; or develop microorganisms for specific agricultural uses. Modern biotechnology today includes the tools of genetic engineering.
2. How is Agricultural Biotechnology being used?





Biotechnology provides farmers with tools that can make production cheaper and more manageable. For example, some biotechnology crops can be engineered to tolerate specific herbicides, which make weed control simpler and more efficient. Other crops have been engineered to be resistant to specific plant diseases and insect pests, which can make pest control more reliable and effective, and/or can decrease the use of synthetic pesticides. These crop production options can help countries keep pace with demands for food while reducing production costs. A number of biotechnology-derived crops that have been deregulated by the USDA and reviewed for food safety by the Food and Drug Administration (FDA) and/or the Environmental Protection Agency (EPA) have been adopted by growers.
Many other types of crops are now in the research and development stages. While it is not possible to know exactly which will come to fruition, certainly biotechnology will have highly varied uses for agriculture in the future. Advances in biotechnology may provide consumers with foods that are nutritionally-enriched or longer-lasting, or that contain lower levels of certain naturally occurring toxicants present in some food plants. Developers are using biotechnology to try to reduce saturated fats in cooking oils, reduce allergens in foods, and increase disease-fighting nutrients in foods. They are also researching ways to use genetically engineered crops in the production of new medicines, which may lead to a new plant-made pharmaceutical industry that could reduce the costs of production using a sustainable resource.
3. What are the benefits of Agricultural Biotechnology?
The application of biotechnology in agriculture has resulted in benefits to farmers, producers, and consumers. Biotechnology has helped to make both insect pest control and weed management safer and easier while safeguarding crops against disease.
For example, genetically engineered insect-resistant cotton has allowed for a significant reduction in the use of persistent, synthetic pesticides that may contaminate groundwater and the environment.
In terms of improved weed control, herbicide-tolerant soybeans, cotton, and corn enable the use of reduced-risk herbicides that break down more quickly in soil and are non-toxic to wildlife and humans. Herbicide-tolerant crops are particularly compatible with no-till or reduced tillage agriculture systems that help preserve topsoil from erosion.
4. What are the safety considerations with Agricultural Biotechnology?
Breeders have been evaluating new products developed through agricultural biotechnology for centuries. In addition to these efforts, the United States Department of Agriculture (USDA), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA) work to ensure that crops produced through genetic engineering for commercial use are properly tested and studied to make sure they pose no significant risk to consumers or the environment.

 5. How widely used are biotechnology crops?
According to the USDA's National Agricultural Statistics Service (NASS), biotechnology plantings as a percentage of total crop plantings in the United States in 2012 were about 88 percent for corn, 94 percent for cotton, and 93 percent for soybeans. NASS conducts an agricultural survey in all states in June of each year. The report issued from the survey contains a section specific to the major biotechnology derived field crops and provides additional detail on biotechnology plantings.

Pages

Search This Blog

Followers

bio technology for new world

Biotechnology: A growing field in the developing world

Biotechnology: A growing field in the developing world The developing world is achieving significant growth in a broad cross-section o...